Chromatic symmetric functions and change of basis

Bruce E. Sagan Michigan State University www.math.msu.edu/~sagan

Joint work with Foster Tom

Dartmouth, November 7, 2023

The monomial basis

The elementary basis

The Schur basis

Comments

Let G = (V, E) be a graph. Let $\mathbb{P} =$ positive integers, and $\mathbf{x} = \{x_1, x_2, \ldots\}$. For $c : V \to \mathbb{P}$ let

$$\mathbf{x}^c = \prod_{v \in V} x_{c(v)}.$$

Call $c: V \to \mathbb{P}$ proper if

$$uv \in E \implies c(u) \neq c(v)$$
.

Stanley's chromatic symmetric function is

$$X(G) = X(G, \mathbf{x}) = \sum_{c : V \to \mathbb{P} \text{ proper}} \mathbf{x}^{c}$$

Ex.

$$G = u \bullet 1 \bullet 2 \bullet 1 \bullet 3 \bullet 1 \bullet 3 \bullet \cdots 2 \bullet \cdots 2$$

A power series f(x) is *symmetric* if it is invariant under permutation of variables.

Ex. $X(G, \mathbf{x})$ is symmetric for any graph G.

Bases for the algebra $\operatorname{Sym} = \operatorname{Sym}(\mathbf{x})$ of symmetric functions in \mathbf{x} of bounded degree are indexed by partitions. A *partition* of a nonnegative integer n is a weakly decreasing sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ with $\sum_i \lambda_i = n$ where the λ_i are called *parts*. The *Young diagram* of λ has k left-justified rows with λ_i boxes is row i. The *transpose* of λ is $\lambda^t = (\lambda_1^t, \lambda_2^t, \dots, \lambda_l^t)$ obtained by reflecting the Young diagram of λ about the diagonal.

In graph G = (V, E) a subset $I \subseteq V$ is *independent* if $u, v \in I$ implies $uv \notin E$. Note: if $c : V \to \mathbb{P}$ is proper then $c^{-1}(i)$ is independent for any $i \in \mathbb{P}$. The *independence number* of G is

 $\alpha(G) = \text{maximum number of elements in an independent set of } G.$

Subset $C \subseteq V$ is a *clique* if $u, v \in C$ implies $uv \in E$. The *clique* number of G is

 $\omega(G) = \text{maximum number of elements in a clique of } G.$

Ex.
$$G = \begin{pmatrix} u & v & I = \{u, w\} \text{ is independent} \\ w & C = \{u, v, x\} \text{ is a clique} \end{pmatrix}$$
 $\alpha(G) = 2$ $\omega(G) = 3$

The monomial symmetric function basis is defined by

 $m_{\lambda} = \text{ sum of all monomials in } \mathbf{x} \text{ having exponent partition } \lambda.$

Ex.
$$m_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \cdots$$

Given any basis $\{b_{\lambda}\}$ for $\mathrm{Sym}(\mathbf{x})$ and $f(\mathbf{x}) \in \mathrm{Sym}(\mathbf{x})$ we say b_{μ} appears in $f(\mathbf{x})$ if $f(\mathbf{x}) = \sum_{\lambda} c_{\lambda} b_{\lambda}$ where $c_{\mu} \neq 0$.

Lemma (S-Tom)

For a given λ , if m_{λ} appears in X(G) then

(a)
$$\alpha(G) \geq \lambda_1$$
, and

(b)
$$\omega(G) \leq \lambda_1^t$$
.

Proof of (a). If m_{λ} appears in X(G) then the monomial $x_1^{\lambda_1} \cdots x_k^{\lambda_k}$ has nonzero coefficient. So there is a proper coloring $c: V \to \mathbb{P}$ with $\#c^{-1}(1) = \lambda_1$. Since $c^{-1}(1)$ is independent and $\alpha(G)$ is the maximum size of an independent set we have $\alpha(G) \geq \lambda_1$.

The *elementary symmetric function basis* is defined by

$$e_n=$$
 sum of all square-free monomials in ${f x}$ of degree $n,$ $e_\lambda=e_{\lambda_1}e_{\lambda_2}\cdots e_{\lambda_k}.$

Ex.
$$e_3 = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4 + \cdots$$
, $e_{(4,3,3)} = e_4e_3e_3$.

Theorem (α/ω Theorem, S-Tom)

For a given λ , if e_{λ} appears in X(G) then

(a)
$$\omega(G) \leq \lambda_1$$
, and

(b)
$$\alpha(G) \geq \lambda_1^t$$
.

Proof of (a). The basis change from m_{μ} to e_{λ} has the form

$$m_{\mu} = \sum_{\lambda > \mu^t} c_{\lambda,\mu} e_{\lambda}.$$

where \geq is lexicographic order. So if e_{λ} appears in X(G) then so does m_{μ} for some $\mu^{t} \leq \lambda$. Combined with the previous proposition part (b): $\omega(G) \leq \mu_{1}^{t} \leq \lambda_{1}$.

Let $[m, n] = \{m, m+1, ..., n\}$ and $[n] = \{1, 2, ..., n\}$. A *(natural unit) interval graph G* has V = [n] and for all i < j

Given a basis $\{b_{\lambda}\}$ for $\mathrm{Sym}(\mathbf{x})$ say that $f(\mathbf{x}) \in \mathrm{Sym}(\mathbf{x})$ is b-positive if each b_{μ} appearing in $f(\mathbf{x})$ has a positive coefficient. The next conjecture was made by Stanley and Stembridge for a wider class of graphs and Guay-Paquet refined it to interval graphs.

Conjecture (Stanley and Stembridge, Guay-Paquet) If G is an interval graph then X(G) is e-positive.

Theorem (S-Tom)

In any interval graph G the coefficient of e_{λ} in X(G) is nonnegative if $\lambda_1 < 3$.

Proof. If e_{λ} appears in X(G) then $\omega(G) \leq 3$. Dahlberg has shown that such interval graphs are e-positive.

Let s_{λ} be the Schur basis for Sym. If G = ([n], E) is an interval graph then the coefficients of $X(G) = \sum_{\lambda} c_{\lambda} s_{\lambda}$ count G-tableaux. A G-tableau of shape λ is a bijective filling of the Young diagram of λ with [n] such that both the following hold.

- 1. If ij is an adjacent pair in a row then $ij \notin E$ and i < j.
- 2. If ij is an adjacent pair in a column and $ij \notin E$ then i < j.

Ex. 1 2 3 4 Some G-tableaux:
$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$

Some non-G-tableaux: $\begin{bmatrix} 1 & 2 \\ \hline 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 \\ \hline 3 \end{bmatrix}$

Let $T_{\lambda}(G)$ be the set of all G-tableau of shape λ .

Theorem (Gasharov)

If G is an interval graph and $X(G) = \sum_{\lambda} c_{\lambda} s_{\lambda}$ then

$$c_{\lambda} = \#T_{\lambda}(G).$$

Theorem (dual Jacobi-Trudi determinant)

If
$$\lambda = (\lambda_1, \lambda_2, \ldots)$$
 then $s_{\lambda^t} = \begin{vmatrix} e_{\lambda_1} & e_{\lambda_1+1} & \cdots \\ e_{\lambda_2-1} & e_{\lambda_2} & \cdots \\ \vdots & \vdots & \vdots \end{vmatrix}$.

So writing X(G) first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T,π) where $T\in T_{\lambda}(G)$ and $\pi\in\mathfrak{S}_{\lambda_1}$ is the permutation from the determinant expansion.

We want a sign-reversing involution to cancel the negative terms. Let us concentrate on e_n .

Let G=([n],E) be an interval graph and $\lambda \vdash n$. The e_h of largest subscript appearing in the determinant for s_λ is at the end of the first row. And in that case h is the hooklength of the (1,1) box of the diagram of λ . So if h=n then λ is a hook. Furthermose e_n only occurs with the permutation $\pi=c,1,2,\ldots,c-1$ where $c=\lambda_1$. So if λ is a hook then let the sign of a G-tableau T of shape λ be

$$\operatorname{sgn} T = \operatorname{sgn} \lambda = (-1)^{c-1}.$$

If λ is a hook then its *arm* and *leg* are the boxes in the first row, respectively first column, except (1,1).

$$\pi = 51234$$
 $\operatorname{sgn} \lambda = (-1)^{5-1} = 1.$

$$A = \text{arm}, L = \text{leg}.$$

If G = ([n], E) then an *inversion* in a G-tableau T is a pair ij with

- 1. i < j,
- 2. i is in a lower row than j, and
- 3. $ij \in E$.

Let $\underline{Inv}\ T$ be the set of inversions of T. Call $k \in [n]$ movable in T if it can be moved from the arm to the leg of T or vice-versa with

- 1. the resulting tableau T' being a G-tableau, and
- 2. Inv T = Inv T'.

3 is moveable and the resulting tableau is $T' = \begin{bmatrix} 1 & 5 \\ \hline 3 & 2 \\ \hline 4 & \end{bmatrix}$

Also 5 is moveable, but 2 and 4 are not.

Lemma (S-Tom)

If k is moveable in T, then there is a unique position to which it can be moved.

If k is moveable in T then let T^k be the result of moving k. Define a map ι on G-tableau T of hook shape by

$$\iota(T) = \left\{ \begin{array}{l} T^k & \text{if } k \text{ is the smallest integer which is moveable in } T, \\ T & \text{if no element in } T \text{ is moveable.} \end{array} \right.$$

Theorem (S-Tom)

Let G be an interval graph with V = [n].

- 1. ι is a sign-reversing, Inv-preserving, involution on hook G-tableaux.
- 2. If T is fixed by ι then it has shape 1^n .
- 3. The coefficient c_n of e_n in X(G) is nonnegative. It is the number of G-tableaux of column shape with no moveable elements.

Other results obtained for e_{λ} via the m_{μ} . We have a strengthening of the α/ω Theorem using an analogue of Greene's invariant. One can also get results for other shapes.

Theorem (S-Tom)

For any interval graph G and $\lambda = (\mu, 1^k)$ where μ is any partition of 10 or less and $k \geq 0$, the coefficient of e_{λ} in X(G) is nonnegative.

Other results for e_{λ} via the Schur functions s_{μ} . It is known from the work of Stanley and the coefficient of e_n in X(G) for any graph G is the number of acyclic orientations of G with a single sink. We have a new interpretation of this coefficient for interval graphs in terms of G-tableaux. Others using this change of basis to make progress on the interval graph conjecture include Cho and Huh, Cho and Hong, and Wang.

THANKS FOR

LISTENING!